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I. INTRODUCTION

As the complexity of FPGA architectures increases, there
is a raising need to improved productivity and performance in
several computing domains such as image processing, finan-
cial analytics, edge computing and deep learning. However,
vendor tools are mostly general-purpose as they attempt to
provide an acceptable quality of result (QoR) on a broad set
of applications, which may not exploit application/domain-
specific characteristics to deliver higher QoR. In this paper,
we present a divide-and-conquer design flow that enables
application/domain-specific optimization on the design of
convolutional neural network (CNN) architectures on Xilinx
FPGAs. The proposed approach follows three fundamental
steps; Step 1: Break the design down into components, Step 2:
Implement these separate components, and Step 3: Efficiently
generate the final design by assembling pre-built components
with minimal QoR lost. Recent research has even demon-
strated that such approaches may provide better QoR than
that of the traditional Vivado flow in some instances [1], [2].
By pre-implementing specific components of a design, higher
performance can be achieved locally and maintained to a
certain extent when assembling the final circuit. This approach
is supported by two main observations [1]: (1) vendor tools
such as Vivado tend to deliver high performance results on
small modules in a design. (2) Computing applications such
as machine learning designs increase in size by replicating
modules. CNN inference refers to the forward propagation of
M input images through L layers. The repetition of compo-
nents within CNN architectures make them suitable candidates
for RapidWright implementation as the CNN sub-modules can
be optimized for performance in standalone, and the achieved
performance can be preserved when replicating and relocating
the modules across the FPGA.

II. PROPOSED DESIGN FLOW

The overview of the pre-implemented flow is presented in
Figure 1. The flow has two major steps that are: function
optimization and architecture optimization. The function op-
timization essentially consists in performing a design space
exploration of the performances that can be achieved on sub-
functions. It takes into consideration some design constraints
such as device, timing, floor planning, and power. If the
design space exploration results in satisfiable performance,
the produced netlists are saved into a database in the form
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Fig. 1: General overview of the proposed design flow.

of DCPs. This step is semi-manual as the designer must
choose and pre-compile the sub-functions in a design using
vendor tools. It is however performed exactly once, and the
saved netlists may serve in multiple designs. The architecture
optimization is a fully automated process that aims to combine
the pre-built components (the netlists saved in the function
optimization phase) into a CNN architecture as defined by the
users.

a) Function Optimization: This section describes the
major steps involved in the design of optimized sub-functions.

« We start by manually building the CNN components Out
of Context (OOC).

« Strategic floorplanning: utilizing pblock constraints al-
lows carefully selecting the FPGA resources that will
be used by each design component. It also enables
the designer with the possibility to only use necessary
resources.

« textbfStrategic port planning: the placement of the ports
when pre-implementing modules is one of the most im-
portant steps to ensure high performance and productivity
improvement.

o Clock routing: to accurately run the timing analysis on
the OOC modules, source clock buffers must be specified
using the constraint HD.CLK_SRC. Though the buffers
are not inserted in the OOC modules, clock signals are
partially routed to the interconnect tiles and the timing
analysis tool can then run timing estimations.



o Logic locking: Once a module attains a desirable perfor-
mance (F,q,, area, power, etc), we lock the placement
and routing to prevent Vivado from altering the design
later and preserve design performance. The other advan-
tage of locking the design is that the final inter-module
routing with Vivado will only consider non-routed nets.
This decreases compilation times and improves the pro-
ductivity.

o Checkpoint file generation: pre-implemented modules
are stored in the form of DCPs.

b) Architecture Optimization:

1) Component Extraction: The major function of the
Component Extraction is to create a DFG from the
CNN architecture definition and compose the resources
needed for the CNNs hardware accelerator on FPGA.
The nodes represent the components, and the edges
account for the connections between them. Each node of
the graph can be a component candidate. Nevertheless,
consecutive nodes in the graph can be pre-implemented
as one component if the data movement between them
does not required a memory controller. In that case,
simple handshake protocol is enough to provide node-to-
node communication with simply single-source, single-
sink FIFO queues with un-bounded length.

2) Component Matching: the API parses the DFG using a
breath-first search (BFS) approach. The hardware gener-
ator that we implement with the RapidWright API loads
the DCPs corresponding to the components defined in
the CNN architecture definition to compose the final
architecture.

3) Architecture Composition To achieve physical hard-
ware re-usability, some requirements must be fulfilled:
each component must implement a specific interface
to communicate with the other design modules. The
”source”, is a dedicated memory controller that read
data from a memory and feed their computing units.
The second interface called “’sink” controls the writing
of feature maps in on-chip memory. After stitching, the
blocks are placed, a DCP file is generated, then read into
Vivado to complete the inter-component routing.

4) Inter-component Routing At this stage, the design
contains all the CNN modules, with the logic and the
internal routing locked. We therefore utilize Vivado for
the final routing, which essentially consists in finding
FPGA interconnects to implement the logic routes be-
tween components.

III. EXPERIMENTAL RESULTS

Overall, Pre-implementing basic components have the po-
tentiality of reducing resource utilization as shown in Table
I. When the design is small, vivado can provide a better
optimization of the resources. We present a comparison with
FPGA designs that utilize a batch size of 1, and we report
simultaneously latency and Frequency. In Table II, we present
the performance of each component as well as the pre-
implemented Lenet. Overall, Lenet achieves up to 1.16X

CLB CLB BRAMs |DSPs
LUTs Registers

Lenet 32021 8538 463 144
(9.65%) |(1.29%) |(21.44%) |(5.21%)

Pre-implemented | 29491 8442 457

Lenet (8.89%)] |(1.26%)1 |(21.16%)

VGG-16 282870 |215763 |854 2116
(85.28%) |(32.53%) |(38.54%) |(76.66)

Pre-implemented | 261321 180754 786 2123

VGG-16 (78.79%)} (27.25%)} (36.39%) 1} (76.92%)

TABLE I: FPGA Resource Utilization

Layers | Full Convl| Pooll+| Conv2| Pool24 FC1 | FC2 | Our

Network ReLU1 ReLU2 work
Freq 375 562 633 475 588 497 543 437
(Mhz) (1.16X)
Latency 249.7 37.33 | 12.93 63.46 | 22.51 | 49.32] 25.05| 249.10
(ns)

TABLE II: LeNet Performance

higher frequency than the classic stream-like architecture.
The first convolution reaches 562 MHz. However, with a
higher number of parameters (from 156 in convl to 2416 in
conv2), the number of multiplications increases from 117600
to 240000, and having a negative impact on the frequency. We
observe the same tendency on FC1 and FC2. The frequency
of the pre-built design is upper bounded by the slowest
component in the design.
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components must be spread around the chip, a rising issue
is how to deal with fabric discontinuities such as erratic
tile patterns and I/O columns. Those discontinuities increase
the datapath and have a negative effect on the performance.
Hence, inserting pipeline elements such as FFs on the critical
path improves the timing performance, while increasing the
overall latency.
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